Modification of Deposited, Size-Selected MoS2 Nanoclusters by Sulphur Addition: An Aberration-Corrected STEM Study

نویسندگان

  • Yubiao Niu
  • Sung Jin Park
  • Scott M. Woodley
چکیده

Molybdenum disulphide (MoS2) is an earth-abundant material which has several industrial applications and is considered a candidate for platinum replacement in electrochemistry. Size-selected MoS2 nanoclusters were synthesised in the gas phase using a magnetron sputtering, gas condensation cluster beam source with a lateral time-of-flight mass selector. Most of the deposited MoS2 nanoclusters, analysed by an aberration-corrected scanning transmission electron microscope (STEM) in high-angle annular dark field (HAADF) mode, showed poorly ordered layer structures with an average diameter of 5.5 nm. By annealing and the addition of sulphur to the clusters (by sublimation) in the cluster source, the clusters were transformed into larger, crystalline structures. Annealing alone did not lead to crystallization, only to a cluster size increase by decomposition and coalescence of the primary clusters. Sulphur addition alone led to a partially crystalline structure without a significant change in the size. Thus, both annealing and sulphur addition processes were needed to obtain highly crystalline MoS2 nanoclusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters

This report focuses on a novel strategy for the preparation of transition metal-MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The ...

متن کامل

Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic s...

متن کامل

Size and Shape of Nanoclusters: Single-Shot Imaging Approach

A method of single-shot imaging via aberration-corrected scanning transmission electron microscopy equipped with high angle annular dark-field detector (STEM-HAADF) has been applied to size-selected gold model catalysts (Au(25) and Au(39) ) on hydroxyapatite. Through quantitative intensity analysis, the size, in terms of number of atoms as well as 3D shape of the clusters are obtained.

متن کامل

Atomic-Scale Observation of Migration and Coalescence of Au Nanoclusters on YSZ Surface by Aberration-Corrected STEM

Unraveling structural dynamics of noble metal nanoclusters on oxide supports is critical to understanding reaction process and origin of catalytic activity in heterogeneous catalysts. Here, we show that aberration-corrected scanning transmission electron microscopy can provide direct atomic-resolution imaging of surface migration, coalescence, and atomic rearrangement of Au clusters on an Y:ZrO...

متن کامل

Determining the thickness of atomically thin MoS2 and WS2 in the TEM.

Multislice simulations were used to analyze the reliability of annular dark field scanning transmission electron microscopy (ADF-STEM) imaging and selected-area electron diffraction (SAED) for determining the thicknesses of MoS2 and WS2 specimens in the aberration-corrected TEM. Samples of 1 to 4 layers in thickness for both 2H and 1T polymorphs were studied and tilts up to 500mrad off of the [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016